Management of sepsis What to do what not to do?

Djillali ANNANE,

General ICU, Hôpital Raymond Poincaré AP-HP Laboratory of Inflammation & Infection, UMR1173 - Université de Versailles; University Paris Saclay, 92380 Garches,

Djillali.annane@aphp.fr

"Symposium about severe infections: A multidisciplinary Approach"

COI Disclosures

Djillali Annane No financial disclosure Member of the Sepsis 3 Task Force Member of the SSC panel for 2008; 2012 and 2016 updates

CONSENSUS

- 1. Beyond the remit of the task force to define infection
- 2. Sepsis is not simply infection + two or more SIRS criteria
- 3. The host response is of key importance
- 4. Sepsis represents bad infection where

bad = infection leading to organ dysfunction

5. "Severe sepsis" is not helpful and should be eliminated

Key Distinctions

Sepsis is life-threatening organ dysfunction caused by a dysregulated host response to infection

So ... "sepsis" now = the old "severe sepsis"

The Definition of Sepsis

Key Distinctions

Sepsis is life-threatening organ dysfunction caused by a *dysregulated host response* to infection

As opposed to the "regulated host response" that characterizes the non-septic response to infection

Why hypotension AND hyperlactatemia for septic shock?

	hospital mortality (%)
hypotension + lactate >2	42.3
hypotension alone	30.1
lactate >2 alone	25.7
no hypotension and lactate <2	18.7

Shankar-Hari et al. JAMA 2016

	Estimated frequency*
Gram-positive bacteria	30-50%
Meticillin-susceptible S aureus	14-24%
Meticillin-resistant S aureus	5-11%
Other Staphylococcus spp	1-3%
Streptococcus pneumoniae	9-12%
Other Streptococcus spp	6-11%
Enterococcus spp	3-13%
Anaerobes	1-2%
Other gram-positive bacteria	1-5%
iram-negative bacteria	25-30%
E coli	9-27%
Pseudomonas aeruginosa	8-15%
Klebsiella pneumoniae	2-7%
Other Enterobacter spp	6-16%
Haemophilus influenzae	2-10%
Anaerobes	3-7%
Other gram-negative bacteria	3-12%
ungus	
Candida albicans	1-3%
Other Candida spp	1-2%
Yeast	1%
arasites	1-3%
liruses	2-4%
rom published clinical trials ^{146,150} and epidemio	ogical studies. ⁵⁶
able 1: Main pathogens in septic shock	

Surviving Sepsis Campaign ONE HOUR BUNDLE We recommend that appropriate routine microbiologic cultures (including blood) be obtained before starting antimicrobial therapy in patients with suspected sepsis or septic shock if doing so results in no substantial delay in the start of antimicrobials (BPS).

hat are the	ection in pa	atients with	severe sep:	T
nd associated crude mortal		ency (%)		lity (%)
Site of infection	Male	Female	Male	Female
Respiratory	41.8	35.8	22.0	22.0
Bacteremia, site unspecified	21.0	20.0	33.5	34.9
Genitourinary	10.3	18.0	8.6	7.8
Abdominal	8.6	8.1	9.8	10.6
Device-related	1.2	1.0	9.5	9.5
Wound/soft tissue	9.0	7.5	9.4	11.7
Central nervous system	0.7	0.5	17.3	17.5
Endocarditis	0.9	0.5	23.8	28.1
Other/unspecified	6.7	8.6	7.6	6.5

Don't Miss in the ER

- 'community' acquired ESB- Coli
- 'community' acquired MRSA
- Many factors innfluence the risk of MRB in patients admitted to the ER
 - Previous hospitalizations
 - Previous exposure to ATB
 - Long-care facilities

pa	atients (B	lactams, I	ugs in ICU ⁷ Q)	J
	St Joseph hospita espected level (Ph	· •	and observed leve	els
	Underdosed levels n=40 (16%)	Appropriate levels n=106 (42%)	Overdosed levels n=106 (42%)	
Low dosage	7 (19.4%)	15 (14.8%)	4 (3.7%)	
Standard dosage	24 (12.2%)	58 (57.4%)	77 (72.6%)	
Elevated dosage	5 (12.5%)	28 (27.7%)	25 (23.6%)	
	Boul	douyre et al - Inte	ns Care Med 2005	; S223

Antibiotics

- We suggest that combination therapy not be routinely used for on-going treatment of most other serious infections, including bacteremia and sepsis without shock.
 - (Weak recommendation; low quality of evidence).
- We recommend against combination therapy for the routine treatment of neutropenic sepsis/bacteremia.
 – (Strong recommendation; moderate quality of evidence).

De-escalation Antibiotic Stewardship

Surviving Sepsis ··· Campaign

- We recommend that empiric antimicrobial therapy be narrowed once pathogen identification and sensitivities are established and/or adequate clinical improvement is noted.
 (BPS)
- We suggest that an antimicrobial treatment duration of 7-10 days is adequate for most serious infections associated with sepsis and septic shock.
 - (Weak recommendation; low quality of evidence)
- We recommend daily assessment for de-escalation of antimicrobial therapy in patients with sepsis and septic shock.
 (BPS)
- We suggest that measurement of procalcitonin levels can be used to support shortening the duration of antimicrobial therapy in sepsis patients.
 - (Weak recommendation; low quality of evidence)

	EGDT IN SEPSIS					
	Control	EGDT	RR (95% C.I.)	P-value		
In-hospital	46.5	30.5	0.58 (0.38-0.87)	0.009		
28-day Mortality	49.2	33.3	0.58 (0.39 - 0.87)	0.01		
60-day Mortality	56.9	44.3	0.67 (0.46-0.96)	0.03		
			Rivers E. <i>N Engl J I</i>	Med. 2001		

	Risk with intervention /1000 treated	Risk with control/1000 treated	Relative effect (95%Cl) NNT	Number of studies (participants) References	Confidence in the effect estimates (GRADE)	Comments
Early goal-directed flui	id and vasopres	sor therapy (various phy	vsiologic goals)			
In-hospital all-cause mortality	238	263	0.9 (0.8;1.1)	8 RCTs (3852) ¹⁻⁸	Low	No difference
All-cause mortality, 4 weeks	254	270	0.9 (0.8;1.1)	6 RCTs (4063) ^{2,3,6-9}	Moderate	No difference
All-cause mortality, >8 weeks	256	264	1.0 (0.8;1.1)	5 RCTs (4012) 3,7,9,10	Low	No difference
pressure (MAP) >65 mmI	Hg; central venous	sor therapy with guideli	≥ 70%)			
All-cause mortality, >4 weeks	235	251	RR 0.9 (0.8;1.1)	4 RCTs (4474) ^{7,8,11,12} and 2 cohort studies(214) ^{13,14}	Low	No difference
All-cause in-hospital mortality	202	209	RR 0.9 (0.8;1.1)	4 RCTs (4474) 7,8,11,12	Low	No difference

Surviving Sepsis ··• Campaign •

Caveats / Limitations of ProCESS, ARISE & Promise

- The overall management of sepsis has changed...
 - In all three studies patients had early antibiotics, > 30ml/kg of intravenous fluid prior to randomization.
- We need therefore to be very careful about over interpreting the results in areas where this paradgim is not valid.

HIDROXIEIP	IYL STARCH OR SALIN	E IN THE ICU		
Table 2. Outcomes and Adverse Events.*				
Variable	HES	Saline	Relative Risk (95% CI)	P Va
Outcome				
Primary outcome of death at day 90 — no./total no. (%)	597/3315 (18.0)	566/3336 (17.0)	1.06 (0.96 to 1.18)	0.2
Secondary outcomes — no./total no. (%)				
Renal outcomes				
RIFLE-R	1788/3309 (54.0)	1912/3335 (57.3)	0.94 (0.90 to 0.98)	0.0
RIFLE-I	1130/3265 (34.6)	1253/3300 (38.0)	0.91 (0.85 to 0.97)	0.0
RIFLE-F	336/3243 (10.4)	301/3263 (9.2)	1.12 (0.97 to 1.30)	0.1
Use of renal-replacement therapy	235/3352 (7.0)	196/3375 (5.8)	1.21 (1.00 to 1.45)	0.0
New organ failure†				
Respiratory	540/2062 (26.2)	524/2094 (25.0)	1.05 (0.94 to 1.16)	0.3
Cardiovascular	663/1815 (36.5)	722/1808 (39.9)	0.91 (0.84 to 0.99)	0.0
Coagulation	142/2987 (4.8)	119/3010 (4.0)	1.20 (0.95 to 1.53)	0.1
Hepatic	55/2830 (1.9)	36/2887 (1.2)	1.56 (1.03 to 2.36)	0.0

Outcome	Albumin Group	Crystalloid Group	Relative Risk (95% CI)	P Valı
Tertiary outcomes∬				
Renal-replacement therapy — no./total no. (%)¶	222/903 (24.6)	194/907 (21.4)		0.11
Acute kidney injury — no./total no. (%)	183/834 (21.9)	190/837 (22.7)		0.71
Duration of mechanical ventilation — days**			_	0.50
Median	6	6		
Interquartile range	2-14	2-13		
Time to suspension of vasopressor or inotropic agents — days††			_	0.00
Median	3	4		
Interquartile range	1–6	2-7		

	Colloids	Crystalloids	Effect size	Р
	N=1414	N=1443	(95% CI)	value
				*
Days alive and free of Vasopressors			Mean	
			difference	
within 7 days	5.0 ± 3.0	4.7 ± 3.1	0.3 (03;+0.5)	0.041
within 28 days	16.2 ± 11.5	15.2 ± 11.7	1.04 (-	0.033
			0.04;+2.1) Annane JAMA 2	014
				014

	Colloids	Crystalloid	Effect size	Р
	N=1414	S	(95% CI)	value
		N=1443		*
Days alive and free of			Mean	
			difference	
MV within the first 7 days	2.1 ± 2.4	1.8 ± 2.3	0.3 (0.09;	0.010
			0.48)	
MV within the first 28 days	14.6 ± 11.4	13.5±11.5 A	Annante (PAMA 2	09.013

	Table 4. NMA Results of 6-Node Analysis, Including Confidence Assessments						
Comparison	Trials With Direct Comparisons, n	Direct Estimate (95% CI); Quality of Evidence	Indirect Estimate (95% Cri); Quality of Evidence	NMA Estimate (95% Cri)* Quality of Evidence			
L-HES vs. saline	4	1.07 (0.89-1.29); Moderate†	0.59 (0.25-1.35); Very low +\$	1.04 (0.87-1.25); Moderat			
H-HES vs. saline	3	0.64 (0.30-1.37); Moderate+	1.13 (0.71-1.80); Very low ++	0.95 (0.64-1.41); Moderat			
Albumin vs. saline	2	0.81 (0.64-1.03); Moderate†	0.96 (0.14-6.31); Very low #	0.82 (0.65-1.04); Moderat			
Balanced crystalloid vs. saline	0	-	0.78 (0.58-1.05); Low1+	0.78 (0.58-1.05); Low			
Gelatin vs. saline	0	-	1.04 (0.46-2.32); Very low 1+	1.04 (0.46-2.32); Very Iov			
H-HES vs. L-HES	0	-	0.91 (0.63-1.33); Low1+	0.91 (0.63-1.33); Low			
Albumin vs. L-HES	0	-	0.79 (0.59-1.06); Low1‡	0.79 (0.59-1.06); Low			
Balanced crystalloid vs. L-HES	2	0.80 (0.61-1.04); Moderate§	0.44 (0.19-0.97); Moderate‡	0.75 (0.58-0.97); Modera			
Gelatin vs. L-HES	0	-	1.00 (0.44-2.21); Very low 1+	1.00 (0.44-2.21); Very low			
Albumin vs. H-HES	2	1.40 (0.35-5.56); Low	0.83 (0.52-1.33); Low1‡	0.87 (0.55-1.36); Low			
Balanced crystalloid vs. H-HES	1	0.74 (0.52-1.05); Moderate†	1.35 (0.63-2.92); Very low+	0.82 (0.60-1.13); Modera			
Gelatin vs. H-HES	1	1.09 (0.55-2.19); Low	-	1.10 (0.54-2.21); Low			
Balanced crystalloid vs. albumin	0	-	0.95 (0.65-1.38); Very low ++	0.95 (0.65-1.38); Very low			
Gelatin vs. albumin	0	-	1.26 (0.55-2.90); Very low #	1.26 (0.55-2.90); Very low			
Gelatin vs. balanced crystalloid	0	-	1.34 (0.61-2.89); Very low #	1.34 (0.61-2.89); Very lov			

Table 3 Results of four-node network meta-analysis including confidence assessments				
Comparison	Number of trials with direct comparisons	Direct estimate (95 % CI)	Indirect estimate (95 % CrI)	NMA estimate (95 % CrI) (higher of direct or indirect confidence)
Starch vs. crystalloid	7	1.39 (1.17, 1.66) H	-	1.39 (1.17-1.66) H
Albumin vs. crystalloid	1	1.04 (0.78, 1.38) M ^a	-	1.04 (0.78-1.38) M
Gelatin vs. crystalloid	0	-	1.05 (0.42, 2.56) VL ^b	1.05 (0.42-2.56) VL
Albumin vs. starch	0	-	0.74 (0.53, 1.04) L ^b	0.74 (0.53–1.04) L
Gelatin vs. starch	1	0.76 (0.31, 1.82) L ^{a,c}	-	0.75 (0.30–1.81) L
Gelatin vs. albumin	0	-	1.01 (0.38, 2.60) VL ^b	1.01 (0.38–2.60) VL
	<i>T</i> credibility interval, <i>NM</i> , ty, <i>M</i> moderate certainty, <i>i</i> cision	T 1 minute to the train	ed down for imprecision d down for risk of bias	and indirectness

Surviving Sepsis Campaign

Fluid Therapy

• We recommend crystalloids as the fluid of choice for initial resuscitation and subsequent intravascular volume replacement in patients with sepsis and septic shock

(Strong recommendation, moderate quality of evidence).

• We suggest using albumin in addition to crystalloids when patients require substantial amounts of crystalloids

(weak recommendation, low quality of evidence).

VASOPRESSORS

Outcomes	Illustrative compa	Relative		Quality of the	
	CI) Assumed risk	Corresponding risk	effect (95% CI)	Participants (studies)	(GRADE)
	Dopamine	Norepinephrine			
Short-term mortality	Study population		RR 0.91	2043	$\oplus \oplus \oplus \ominus$
	530 per 1000	482 per 1000 (440 to 524)	(0.83 to 0.99)	(6 studies)	moderate ^{1,2}
Serious adverse events -	Study population		RR 0.47	1931	$\oplus \oplus \oplus \ominus$
Supraventricular arrhythmia	⁵ 229 per 1000	82 per 1000 (34 to 195)	(0.38 to 0.58)	(2 studies)	moderate ^{1,2}
Serious adverse events -	Study population		RR 0.35	1931	$\oplus \oplus \oplus \ominus$
Ventricular arrhythmias	39 per 1000	15 per 1000 (8 to 27)	(0.19 to 0.66)	(2 studies)	moderate ^{1,2}

Meta-analysi	is of Nore	pinephrine	e versus I	Epine	phrine
Dutcomes	Illustrative com	parative risks (95%	Relative effect	No of	Quality of
	CI)		(95% CI)	Participan	tthe
	Assumed risk	Corresponding risk		s (studies)	evidence (GRADE)
	Epinephrine	Norepinephrine			
Short term mortality	Study populati	on	RR 0.96	540	$\oplus \oplus \oplus \Theta$
	357 per 1000	343 per 1000 (268 to 429)	(0.77 to 1.21)	(4 studies)	moderate ¹
Serious adverse events -	Study populati	on	RR 1.10	330	$\oplus \oplus \Theta \Theta$
Supraventricular arrhythmias	118 per 1000	130 per 1000 (58 to 198)	(0.62 to 1.96)	(1 study)	low ^{1,2}
Serious adverse events -	Study populati	on	RR 0.64	330	$\oplus \oplus \ominus \ominus$
Ventricular arrhythmias	75 per 1000	48 per 1000 (-5 to 95)	(0.27 to 1.51)	(1 study)	low ^{1,2}
Grade reduced for imprecision.		. ,			

Dutcomes	Illustrative comparative risks (95% CI)		Relative effect	No of Participants	nts Quality of the evidence
	Assumed risk	Corresponding risk	(95% CI)	(studies)	(GRADE)
	Vasopressin	Norepinephrine			
Short term mortality	Study population		RR 1.12	963	000
	386 per 1000	433 per 1000	(0.96 to1.30)	(7 studies)	low ^{1,2,3,4}
		(371 to 502)			
Serious adverse events -	Study populati	on	R.R 7.25	116	$\oplus \oplus \ominus \ominus$
Supraventricular arrhythmias	45 per 1000	325 per 1000	(2.30 to 22.90)	(3 studies)	low ^{1,2,3,5}
		(103 to 1000)			
Serious adverse events -	Study populati	on	R.R 0.78	801	$\oplus \oplus \ominus \ominus$
Ventricular arrhythmias	20 per 1000	15 per 1000	(0.27 to 2.22)	(2 studies)	low ^{1,2,3,4}
		(5 to 43)			
Serious adverse events -	Study populati	on	RR 1.04	778	$\oplus \oplus \ominus \ominus$
Stroke	3 per 1000	3 per 1000	(0.07 to 16.51)	(1 study)	low ^{1,2,3,4}
		(0 to 42)			
Serious adverse events -	Study populati	on	R.R 1.05	849	$\oplus \oplus \ominus \ominus$
Acute coronary events	23 per 1000	24 per 1000	(0.44 to 2.50)	(3 studies)	low ^{1,2,3,4}
		(10 to 58)			
Serious adverse events -	Study population		R.R 0.54 (0.25 to	826	$\oplus \oplus \ominus \ominus$
Limb ischemia	36 per 1000	19 per 1000	1.19)	(2 studies)	low ^{1,2,3,4}
		(-4 to 36)			

Surviving Sepsis Campaign Camp

 Surviving Sepsis: Campaign
We suggest against routinely monitoring gastric residual volumes in critically ill patients with sepsis or septic shock. (Weak recommendation; low quality of evidence). However, we suggest measurement of gastric residuals in patients with feeding intolerance or who are considered to be high risk for aspiration.
(Weak recommendation; very low quality of evidence)

an den Berghe-2006 1.057 0.826 1.353 0.441 0.659 ucotrol-2006 0.788 0.573 1.085 -1.460 0.144 SEP-2008 1.064 0.720 1.572 0.310 0.757 e La Rosa-2008 0.830 0.574 1.199 -0.994 0.320 abi-2008 0.781 0.484 1.262 -1.009 0.313 CE-SUGAR 2009 0.918 0.812 1.038 -1.361 0.173	Study name		Statis	tics for ea	ach study	_	Odds ratio and 9	5% a
an den Berghe-2006 1.057 0.826 1.353 0.441 0.659 ucotrol-2006 0.788 0.573 1.085 -1.460 0.144 SEP-2008 1.064 0.720 1.572 0.310 0.757 e La Rosa-2008 0.830 0.574 1.199 -0.994 0.320 abi-2008 0.781 0.484 1.262 -1.009 0.313 CE-SUGAR 2009 0.918 0.812 1.038 -1.361 0.173					Z-Value	p-Value		
ucotrol-2006 0.788 0.573 1.085 -1.460 0.144 SEP-2008 1.064 0.720 1.572 0.310 0.757 abi-2008 0.830 0.574 1.199 -0.994 0.320 abi-2008 0.781 0.484 1.262 -1.009 0.313 CE-SUGAR2009 0.918 0.812 1.038 -1.361 0.173	Van den Berghe-2001	1.572	1.102	2.242	2.498	0.012	-	
SEP-2008 1.064 0.720 1.572 0.310 0.757 B La Rosa-2008 0.830 0.574 1.199 -0.994 0.320 abi-2008 0.781 0.484 1.262 -1.009 0.313 CE-SUGAR2009 0.918 0.812 1.038 -1.361 0.173	Van den Berghe-2006	1.057	0.826	1.353	0.441	0.659	│	-
B La Rosa-2008 0.830 0.574 1.199 -0.994 0.320 abi-2008 0.781 0.484 1.262 -1.009 0.313 CE-SUGAR2009 0.918 0.812 1.038 -1.361 0.173	Glucotrol-2006	0.788	0.573	1.085	-1.460	0.144		
abi-2008 0.781 0.484 1.262 -1.009 0.313	VISEP-2008	1.064	0.720	1.572	0.310	0.757	--	— I
DE-SUGAR 2009 0.918 0.812 1.038 -1.361 0.173 -	De La Rosa-2008	0.830	0.574	1.199	-0.994	0.320	—	
	Arabi-2008	0.781	0.484	1.262	-1.009	0.313	←	-
0.954 0.871 1.046 -0.995 0.320	NICE-SUGAR 2009	0.918	0.812	1.038	-1.361	0.173		
		0.954	0.871	1.046	-0.995	0.320		
0.5 1 2							0.5 1	2
Favors Control Favors IIT							Favors Control	avors IIT

Energy delivery and BGC

Study name	VDB 2001 [4]		VDB 2006 [11]		Glucontrol [10]		NICE-SUGAR [5]		COITTSS [7]		VISEP [50]	
	Experimental	Control	Experimental	Control	Experimental	Control	Experimental	Control	Experimental	Control	Experimental	Contro
Morning mean BGL, mg/dL	103.6	154.5	110.0	160.9	110.9	140.0	118.0	144.9	147.3	154.5	112,7	152.7
SD or confidence interval	20.0	32.7	30.0	28.0	100-123.6	121.8-160	25.1	26.0	30.9	34.5	1.8	3.6
Death at 90 days, %	5	7	35.9	37.7	23.3	19.4	27.5	24.9	45.9	42.9	39.7	35.4
Caloric intake, kcal/day	550-1,600		1,202	1,237	760	760	891	872	1,350		1,217	1,253
Quantity of glucose administered per day, g	120		202	198	73.7	71.8	23.4	24,4	25		144	144
Daily insulin dose, insulin units	71	33	59	10	31.2	7.68	50.2	16.9	71	46	43	29
SD or confidence interval	48-100	17-56	37-86	0-38	15.6-55.2	30.48	38.1	29	45-96	30-65	23-64	15-51
Hypoglycemia rate, %	0.8	5	18.7	3.1	8.7	2.7	6.8	0.5	16.4	7.8	10.1	4.1

Mazeraud et al Crit Care 2014

Surviving Sepsis Campaign → GLUCOSE CONTROL 1. We recommend a protocolized approach to blood glucose management in ICU patients with sepsis, commencing insulin dosing when 2 consecutive blood glucose levels are >180 mg/dL. This approach should target an upper blood glucose level ≤180 mg/dL rather than an upper target blood glucose ≤110 mg/dL. (Strong recommendation; high quality of evidence) 1. We recommend that blood glucose values be monitored every 1 to 2 hrs until glucose values and insulin infusion rates are stable, then every 4 hrs thereafter in patients receiving insulin infusions. (BPS) Surviving Sepsis

Campaign • GLUCOSE CONTROL

3. We recommend that glucose levels obtained with point-of-care testing of capillary blood be interpreted with caution, as such measurements may not accurately estimate arterial blood or plasma glucose values.

(BPS)

4. We suggest the use of arterial blood rather than capillary blood for point of care testing using glucose meters if patients have arterial catheters.

(Weak recommendation; low quality of evidence)

ADJUNCT THERAPIES

	Comp	arison of benefits and	harms	
Favours	corticosteroids	No important difference	Favours no c	orticosteroids
		- Events per 1000 people		Evidence quality
Mortality	236	18 fewer	254	★★★★ Low
Neuromuscular weaknes	s 303	53 fewer	250	★★★★ Low
Quality of Life		Unknown		★★★★ None
Stroke	10	No important difference	5	★★★★ Very low
Myocardial infarction	27	No important difference	30	★★★★ Very Lov
		— Mean number of days –		
Length of ICU stay	12.4	0.7 fewer	13.1	★★★★ Moderat
Length of hospital stay	31.3	0.7 fewer	32.0	★★★★ Moderat

		Treatm		Contr			Risk Ratio	Risk Ratio
	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% Cl
	1.5.1 Sepsis							
	Bone 1987	65	191	48	190	34.3%	1.35 [0.98, 1.84]	
S	Keh 2016	15	171	14	170	10.0%	1.07 [0.53, 2.14]	
	Luce 1988 Rinaldi 2006	22 6	38 26	20 7	37 26	14.4% 5.0%	1.07 [0.72, 1.60] 0.86 [0.33, 2.21]	
ŝ	VASSCSG 1987	23	112	24	111	5.0%	0.86 [0.33, 2.21]	
Sepsis	Yildiz 2002	23	20	12	20	8.6%	0.67 [0.35, 1.27]	
ă, I	Yildiz 2001	16	27	15	28	10.5%	1.11 [0.69, 1.76]	
	Subtotal (95% CI)	10	585			100.0%	1.10 [0.92, 1.33]	★
	Total events	155		140				
	Heterogeneity: Chi ² =	4.53, df =	6 (P =	0.61); I ² =	0%			
	Test for overall effect:	Z = 1.03	P = 0.3	0)				
	1.5.2 Septic shock of							
	Annane 2002	82 264	151 614	91 308	149 627	14.9% 49.6%	0.89 [0.73, 1.08]	
Septic shock	Annane 2017 Arabi 2011	264	39	308	36	49.0%	0.88 [0.78, 0.99]	
I X	Bollaert 1998		22	12	19	2.1%	0.50 [0.25, 1.02]	
	Briegel 1999	3	20	4	20	0.7%	0.75 [0.19, 2.93]	·
	Chawla 1999	6	23	10	21	1.7%	0.55 [0.24, 1.25]	
	Gordon 2014	7	31	7	30	1.2%	0.97 [0.39, 2.43]	
<u> </u>	Hu 2009	4	38	6	39	1.0%	0.68 [0.21, 2.23]	
- - -	Oppert 2005	10	23	11	25	1.7%	0.99 [0.52, 1.88]	
L d	Schumer 1976	9	86	33	86	5.4%	0.27 [0.14, 0.53]	← → → → → → → → → → → → → → → → → → → →
O O	Sprung 1984	33	43	11	16	2.6%	1.12 [0.77, 1.61]	
S	Sprung 2008	86	251	78	248	12.8%	1.09 [0.85, 1.40]	
	Tandan 2005 Subtotal (95% CI)	11	14 1355	13	14	2.1%	0.85 [0.62, 1.15]	
	Total events	555	1355	610	1330	100.0%	0.88 [0.81, 0.96]	\bullet
	Heterogeneity: Chi#=		- 12 /8			4		
	Test for overall effect:				= 55.	•		
				,				
70	1.5.3 Sepsis and ARE)S						
	Liu 2012	3	12	6	14	11.5%	0.58 [0.18, 1.85]	• • •
	Meduri 2007	10	42	8	19	22.9%	0.57 [0.27, 1.20]	
RDS	Rezk 2013	0	18	3	9	9.6%	0.08 [0.00, 1.32]	·
	Tongyoo 2016 Subtotal (95% CI)	22	98 170	27	99 141	56.0% 100.0%	0.82 [0.50, 1.34]	
< <	Total events	35	170	44	141	100.0%	0.66 [0.46, 0.97]	
	Heterogeneity: Chi ² =		2 /P -		6.06			
	Test for overall effect:				0.0			
	1.5.4 Sepsis and con							
	Confalonieri 2005	0	23	6	23	17.0%	0.08 [0.00, 1.29]	·
	Meijvis 2011	9	151	11	153	28.7%	0.83 [0.35, 1.94]	
	Sabry 2011	2	40	6	40	15.7%	0.33 [0.07, 1.55]	· · · · · · · · · · · · · · · · · · ·
	Snijders 2010	6	104	6	109	15.4%	1.05 [0.35, 3.15]	
	Torres 2015 Subtotal (95% CI)	6	59 377	9	61	23.2% 100.0%	0.69 [0.26, 1.82] 0.62 [0.38, 1.02]	
	Total events	23	511	38	500	100.076	0.02 [0.50, 1.02]	
	Heterogeneity: Chi ² =		4 (P =		296			
	Test for overall effect:				- 10			
				-,				
								0.2 0.5 1 2 5
								Favours corticosteroids Favours control
	Test for subgroup diff	erences	Chi2 = (2.46 df =	3 (P =	1.02) JP =	68.3%	

Blood Purification?

Preventing Cognitive Dysfunction

Targets	Intervention	mechanisms
Restoring BBB function	Beta blockade	Endothelial cells and inhibition of MMP9
	Erythropoietin, IVIg, hydrocortisone	Attenuation of in situ cytokines expression
Downregulating microglial cells	IL-1 ra	IL-1 inhibition
	apocynin	Selective inhibition of NADPH oxydase type 2
	mAB 1379 antifactor B	Downregulate oxidative stress
	Anaphylatoxin C5a recombinant	Reduces glutamate toxicity
	minocycline	Downregulate oxidative stress
	Valproic acid	Inhibition of Histone deacetylases
		Annane et al Lancet Resp Med 2015

